An inverse Lax-Wendroff method for boundary conditions applied to Boltzmann type models

نویسندگان

  • Francis Filbet
  • Chang Yang
چکیده

In this paper we present a new algorithm based on a Cartesian mesh for the numerical approximation of kinetic models on complex geometry boundary. Due to the high dimensional property, numerical algorithms based on unstructured meshes for a complex geometry are not appropriate. Here we propose to develop an inverse Lax-Wendroff procedure, which was recently introduced for conservation laws [21], to the kinetic equations. Applications in 1D×3D and 2D×3D of this algorithm for Boltzmann type operators (BGK, ES-BGK models) are then presented and numerical results illustrate the accuracy properties of this algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse Lax-Wendroff procedure for numerical boundary treatment of hyperbolic equations

Abstract We discuss a high order accurate numerical boundary condition for solving hyperbolic conservation laws on fixed Cartesian grids, while the physical domain can be arbitrarily shaped and moving. Compared with body-fitted meshes, the biggest advantage of Cartesian grids is that the grid generation is trivial. The challenge is however that the physical boundary does not usually coincide wi...

متن کامل

Inverse Lax-Wendroff procedure for numerical boundary conditions of conservation laws

We develop a high order finite difference numerical boundary condition for solving hyperbolic conservation laws on a Cartesian mesh. The challenge results from the wide stencil of the interior high order scheme and the fact that the boundary intersects the grids in an arbitrary fashion. Our method is based on an inverse Lax-Wendroff procedure for the inflow boundary conditions. We repeatedly us...

متن کامل

Water hammer simulation by explicit central finite difference methods in staggered grids

Four explicit finite difference schemes, including Lax-Friedrichs, Nessyahu-Tadmor, Lax-Wendroff and Lax-Wendroff with a nonlinear filter are applied to solve water hammer equations. The schemes solve the equations in a reservoir-pipe-valve with an instantaneous and gradual closure of the valve boundary. The computational results are compared with those of the method of characteristics (MOC), a...

متن کامل

Stability analysis of the inverse Lax-Wendroff boundary treatment for high order upwind-biased finite difference schemes

In this paper, we consider linear stability issues for one-dimensional hyperbolic conservation laws using a class of conservative high order upwind-biased finite difference schemes, which is a prototype for the weighted essentially non-oscillatory (WENO) schemes, for initial-boundary value problems (IBVP). The inflow boundary is treated by the so-called inverse Lax-Wendroff (ILW) or simplified ...

متن کامل

Inverse Lax-Wendroff procedure for numerical boundary conditions of hyperbolic equations: survey and new developments

Abstract. In this paper, we give a survey and discuss new developments and computational results for a high order accurate numerical boundary condition based on finite difference methods for solving hyperbolic equations on Cartesian grids, while the physical domain can be arbitrarily shaped. The challenges are the wide stencil for the high order scheme and the fact that the physical boundary do...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 245  شماره 

صفحات  -

تاریخ انتشار 2013